The baryon density of the universe from the improved rate of deuterium burning

The baryon density of the universe from the improved rate of deuterium burning
  • 1.

    Cybert, RH, Fields, BD, Olive, KA & Y, T. H. Big Bang Nucleosynthesis: Current Condition. Rev. Mode. Phys. 88, 015004 (2016).

    ADS
    Article

    Google Scholar

  • 2.

    Tanabashi, m. Overview of particle physics. Phys. Rev. D 98, 030001 (2018).

    ADS
    Article

    Google Scholar

  • 3.

    Cook, R., Pettini, M. & Steele, c. One percent determination of primordial deuterium abundance. Astrophys. J.. 855, 102 (2018).

    ADS
    Article

    Google Scholar

  • 4.

    Pitro, C., Coke, A., Usan, J. with improved helium-4 predictions. & Vanjioni, e. Precision Big Bang Nucleosynthesis. Phys. Rep. 754, 1–66 (2018).

    ADS
    MathSciNet
    Case
    Article

    Google Scholar

  • 5.

    Coke, a. New response rate for improved primordial d / h calculation and deuterium cosmic evolution. Phys. Rev. D 92, 123526 (2015).

    ADS
    Article

    Google Scholar

  • 6.

    D. Valentino, e. Others. Nuclear rates are checked using Planck and BICEP2. Phys. Rev. D 90, 023543 (2014).

    ADS
    Article

    Google Scholar

  • 7.

    Aganim, n. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article

    Google Scholar

  • 8.

    Broggini, C., Bemmer, D., Cassoli, A.. & Tracy, d. Luna: Status and Prospects. Prog. Part. Duplicate. Phys. 98, 55–84 (2018).

    ADS
    Case
    Article

    Google Scholar

  • 9.

    Kavanna, F .; & Defendant, p. Direct measure of the nuclear cross-section of the astronomical interest: results and perspectives. Int. J. Phys. A 33, 1843010–1843042 (2018).

    ADS
    Case
    Article

    Google Scholar

  • 10.

    Moses, V. Set up commissioning for better measurement of D (P.,C)3He cross-section on the Big Bang nucleosynthesis energies. Euro. Phys. J. 56, 144 (2020).

    See also  Astronomers have discovered a small dwarf galaxy with darker matter than we expected.

    ADS
    Case
    Article

    Google Scholar

  • 11.

    Formicola, a. Others. LUNA II 400kV Accelerator. Duplicate. Instrum. Methods Phys. Res. A 507, 609–616 (2003).

    ADS
    Case
    Article

    Google Scholar

  • 12.

    Fields, bd, olive, ka, y, t. H. & Young, c. Big-Bang Nucleosynthesis of Planck. J. Cosmol. Astropart. Phys. 03, 010 (2020).

    ADS
    MathSciNet
    Article

    Google Scholar

  • 13.

    Casella, c. The first measure of D (P.,C)3He went down the cross section to Solar Gamo Peak. Duplicate. Phys. A 706, 203–216 (2002).

    ADS
    Article

    Google Scholar

  • 14.

    Ma, L. Dimensions of 1H (d,C)3He too 2H (P.,C)3He’s very low. Phys. Rev. C 55, 588–596 (1997).

    ADS
    Case
    Article

    Google Scholar

  • 15.

    Griffiths, G., Larson, e. & Robertson, L. Capture of protons by protons. Can. J. Phys. 40, 402–411 (1962).

    ADS
    Article

    Google Scholar

  • 16.

    Schmid, G .; The 2H (P.,C)3He too 1H (d,C)3He responds below 80 keV. Phys. Rev. C 56, 2565-2581 (1997).

    ADS
    Case
    Article

    Google Scholar

  • 17.

    Tiama, i. Others. Experimental cross section and angular distribution 2H (P.,C)3He reacts on the Big-Bang nucleosynthesis energies. Euro. Phys. J. 55, 137 (2019).

    ADS
    Article

    Google Scholar

  • 18.

    Markuchi, L., Mangano, G., Kievsky, A.. & Viviani, M. Indication of proton-deuteron radiative capture for the Big Bang nucleosynthesis. Phys. Rev. Let. 116, 102501 (2016).

    ADS
    Case
    Article

    Google Scholar

  • 19.

    Adelberger, e. Solar Fusion Cross Sections. II. The pp Chain and CNO wheels. Rev. Mode. Phys. 83, 195–245 (2011).

    ADS
    Case
    Article

    Google Scholar

  • 20.

    Schmid, G .; Consequences of Nucleonic Degree Independence in D ( ( Overwriter {p}} ), C)3He too P.( ( Overwriter {d}} ), C)3He responds Phys. Rev. Let. 76, 3088–3091 (1996).

    See also  Video release of the spacecraft landing on Mars

    ADS
    Case
    Article

    Google Scholar

  • 21.

    Iliadis, C., Anderson, K. S., Coke, A., Tims, F. X & Starfield, S. Bayesian Estimate of Thermonuclear Reaction Rate. Astrophys. J.. 831, 107 (2016).

    ADS
    Article

    Google Scholar

  • 22.

    Consiglio, r. Others. PArthENoPE reloaded. Compute. Phys. Commune. 233, 237–242 (2018).

    ADS
    Case
    Article

    Google Scholar

  • 23.

    D. Salas, p. & Pastor, s. Relic neutrino decoupling with flavor oscillations revisited. J. Cosmol. Astropart. Phys. 07, 051 (2016).

    Article

    Google Scholar

  • 24.

    Mangano, G .; Relic neutrino decoupling including flavor oscillations. Duplicate. Phys. B 729, 221–234 (2005).

    ADS
    Article

    Google Scholar

  • 25.

    Awer, E., Olive, K.A., & Skillman, ed I λ10830 In determining helium abundance. J. Cosmol. Astropart. Phys. 07, 011 (2015).

    ADS
    Article

    Google Scholar

  • 26.

    Paimbert, A., Paimbert, M. & Luridiana, V. Primordial helium abundance and number of neutrino families. Rev. Mex. Astron. Astrophys. 52, 419–424 (2016).

    ADS
    Case

    Google Scholar

  • 27.

    Valerdi, M., Pymbert, A., Pyembert, M. & Sixtus, a. Primordial helium abundance determination based on NGC 346, an H ii Area of ​​small Magellanic cloud. Astrophys. J.. 876, 98 (2019).

    ADS
    Case
    Article

    Google Scholar

  • 28.

    Isotov, YI, Tuan, TX & Guseva, NG The Primordial Deuterium Abundance of the Metal-Poor Wet Line System. Not Monday. R. Astron. So.. 445, 778–793 (2014).

    ADS
    Case
    Article

    Google Scholar

  • 29.

    Griffiths, G., Lal, M. & Scarf, c. Response D (P.,C)3He is below 50 kV. Can. J. Phys. 41, 724–736 (1963).

    ADS
    Case
    Article

    See also  Chang'e-5 Ascending Docks with Orbital Module in Lunar Orbit

    Google Scholar

  • 30.

    Warren, JB, Erdmann, KL, Robertson, LP, Axen, DA & McDonald, JR Photodiodegradation 3He was near the threshold. Phys. Rev. 132, 1691-1692 (1963).

    ADS
    Case
    Article

    Google Scholar

  • 31.

    Geller, K., Moorhead, E.. & Cohen, L. The 2H (P.,C)3He responds on the breakup threshold. Duplicate. Phys. A 96, 397–400 (1967).

    ADS
    Case
    Article

    Google Scholar

  • 32.

    Ferraro, F. High Efficiency Gas Target Setup for Underground Experiments, Redesigning Branching Ratio of 189.5 KEV 22Birth (P.,C)23Resonance. Euro. Phys. J. 54, 44 (2018).

    ADS
    Article

    Google Scholar

  • 33.

    Rolfes, c. & Rodney, Wm. Coldrons in the Cosmos (University. Chicago Press, 1988).

  • 34.

    Serpico, PD et al. Nuclear Reaction Network for Primordial Nucleosynthesis: A Detailed Analysis of Rates, Uncertainties, and Light Nuclei. J. Cosmol. Astropart. Phys. 2004, 010 (2004).

    Article

    Google Scholar

  • 35.

    Nolet, KM & Burles, s. Response rate and uncertainty for primordial nucleosynthesis are calculated. Phys. Rev. D 61, 123505 (2000).

    ADS
    Article

    Google Scholar

  • 36.

    Tumino, a. Others. ‘S new visualization determination 2H (d,P.)3H,. 2H (d,n)3His response rate in astronomy. Astrophys. J.. 785, 96 (2014).

    ADS
    Article

    Google Scholar

  • 37.

    Pisanthi, O .; Parthenop: A public algorithm that evaluates the nucleosynthesis of primordial elements. Compute. Phys. Commune. 178, 956–971 (2008).

    ADS
    Case
    Article

    Google Scholar

  • Written By
    More from Jake Pearson
    The European Union has condemned the breach of the Brexit deal
    Brussels believes London’s decision to extend the grace period for food control...
    Read More
    Leave a comment

    Your email address will not be published. Required fields are marked *