The baryon density of the universe from the improved rate of deuterium burning

The baryon density of the universe from the improved rate of deuterium burning
  • 1.

    Cybert, RH, Fields, BD, Olive, KA & Y, T. H. Big Bang Nucleosynthesis: Current Condition. Rev. Mode. Phys. 88, 015004 (2016).

    ADS
    Article

    Google Scholar

  • 2.

    Tanabashi, m. Overview of particle physics. Phys. Rev. D 98, 030001 (2018).

    ADS
    Article

    Google Scholar

  • 3.

    Cook, R., Pettini, M. & Steele, c. One percent determination of primordial deuterium abundance. Astrophys. J.. 855, 102 (2018).

    ADS
    Article

    Google Scholar

  • 4.

    Pitro, C., Coke, A., Usan, J. with improved helium-4 predictions. & Vanjioni, e. Precision Big Bang Nucleosynthesis. Phys. Rep. 754, 1–66 (2018).

    ADS
    MathSciNet
    Case
    Article

    Google Scholar

  • 5.

    Coke, a. New response rate for improved primordial d / h calculation and deuterium cosmic evolution. Phys. Rev. D 92, 123526 (2015).

    ADS
    Article

    Google Scholar

  • 6.

    D. Valentino, e. Others. Nuclear rates are checked using Planck and BICEP2. Phys. Rev. D 90, 023543 (2014).

    ADS
    Article

    Google Scholar

  • 7.

    Aganim, n. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article

    Google Scholar

  • 8.

    Broggini, C., Bemmer, D., Cassoli, A.. & Tracy, d. Luna: Status and Prospects. Prog. Part. Duplicate. Phys. 98, 55–84 (2018).

    ADS
    Case
    Article

    Google Scholar

  • 9.

    Kavanna, F .; & Defendant, p. Direct measure of the nuclear cross-section of the astronomical interest: results and perspectives. Int. J. Phys. A 33, 1843010–1843042 (2018).

    ADS
    Case
    Article

    Google Scholar

  • 10.

    Moses, V. Set up commissioning for better measurement of D (P.,C)3He cross-section on the Big Bang nucleosynthesis energies. Euro. Phys. J. 56, 144 (2020).

    READ  NASA chooses to build first mobile network on moon

    ADS
    Case
    Article

    Google Scholar

  • 11.

    Formicola, a. Others. LUNA II 400kV Accelerator. Duplicate. Instrum. Methods Phys. Res. A 507, 609–616 (2003).

    ADS
    Case
    Article

    Google Scholar

  • 12.

    Fields, bd, olive, ka, y, t. H. & Young, c. Big-Bang Nucleosynthesis of Planck. J. Cosmol. Astropart. Phys. 03, 010 (2020).

    ADS
    MathSciNet
    Article

    Google Scholar

  • 13.

    Casella, c. The first measure of D (P.,C)3He went down the cross section to Solar Gamo Peak. Duplicate. Phys. A 706, 203–216 (2002).

    ADS
    Article

    Google Scholar

  • 14.

    Ma, L. Dimensions of 1H (d,C)3He too 2H (P.,C)3He’s very low. Phys. Rev. C 55, 588–596 (1997).

    ADS
    Case
    Article

    Google Scholar

  • 15.

    Griffiths, G., Larson, e. & Robertson, L. Capture of protons by protons. Can. J. Phys. 40, 402–411 (1962).

    ADS
    Article

    Google Scholar

  • 16.

    Schmid, G .; The 2H (P.,C)3He too 1H (d,C)3He responds below 80 keV. Phys. Rev. C 56, 2565-2581 (1997).

    ADS
    Case
    Article

    Google Scholar

  • 17.

    Tiama, i. Others. Experimental cross section and angular distribution 2H (P.,C)3He reacts on the Big-Bang nucleosynthesis energies. Euro. Phys. J. 55, 137 (2019).

    ADS
    Article

    Google Scholar

  • 18.

    Markuchi, L., Mangano, G., Kievsky, A.. & Viviani, M. Indication of proton-deuteron radiative capture for the Big Bang nucleosynthesis. Phys. Rev. Let. 116, 102501 (2016).

    ADS
    Case
    Article

    Google Scholar

  • 19.

    Adelberger, e. Solar Fusion Cross Sections. II. The pp Chain and CNO wheels. Rev. Mode. Phys. 83, 195–245 (2011).

    ADS
    Case
    Article

    Google Scholar

  • 20.

    Schmid, G .; Consequences of Nucleonic Degree Independence in D ( ( Overwriter {p}} ), C)3He too P.( ( Overwriter {d}} ), C)3He responds Phys. Rev. Let. 76, 3088–3091 (1996).

    READ  Are some black holes slipping? Gamma-ray bursts may be indicated.

    ADS
    Case
    Article

    Google Scholar

  • 21.

    Iliadis, C., Anderson, K. S., Coke, A., Tims, F. X & Starfield, S. Bayesian Estimate of Thermonuclear Reaction Rate. Astrophys. J.. 831, 107 (2016).

    ADS
    Article

    Google Scholar

  • 22.

    Consiglio, r. Others. PArthENoPE reloaded. Compute. Phys. Commune. 233, 237–242 (2018).

    ADS
    Case
    Article

    Google Scholar

  • 23.

    D. Salas, p. & Pastor, s. Relic neutrino decoupling with flavor oscillations revisited. J. Cosmol. Astropart. Phys. 07, 051 (2016).

    Article

    Google Scholar

  • 24.

    Mangano, G .; Relic neutrino decoupling including flavor oscillations. Duplicate. Phys. B 729, 221–234 (2005).

    ADS
    Article

    Google Scholar

  • 25.

    Awer, E., Olive, K.A., & Skillman, ed I λ10830 In determining helium abundance. J. Cosmol. Astropart. Phys. 07, 011 (2015).

    ADS
    Article

    Google Scholar

  • 26.

    Paimbert, A., Paimbert, M. & Luridiana, V. Primordial helium abundance and number of neutrino families. Rev. Mex. Astron. Astrophys. 52, 419–424 (2016).

    ADS
    Case

    Google Scholar

  • 27.

    Valerdi, M., Pymbert, A., Pyembert, M. & Sixtus, a. Primordial helium abundance determination based on NGC 346, an H ii Area of ​​small Magellanic cloud. Astrophys. J.. 876, 98 (2019).

    ADS
    Case
    Article

    Google Scholar

  • 28.

    Isotov, YI, Tuan, TX & Guseva, NG The Primordial Deuterium Abundance of the Metal-Poor Wet Line System. Not Monday. R. Astron. So.. 445, 778–793 (2014).

    ADS
    Case
    Article

    Google Scholar

  • 29.

    Griffiths, G., Lal, M. & Scarf, c. Response D (P.,C)3He is below 50 kV. Can. J. Phys. 41, 724–736 (1963).

    ADS
    Case
    Article

    READ  See OSIRIS-REx extracted from Bennu's asteroid

    Google Scholar

  • 30.

    Warren, JB, Erdmann, KL, Robertson, LP, Axen, DA & McDonald, JR Photodiodegradation 3He was near the threshold. Phys. Rev. 132, 1691-1692 (1963).

    ADS
    Case
    Article

    Google Scholar

  • 31.

    Geller, K., Moorhead, E.. & Cohen, L. The 2H (P.,C)3He responds on the breakup threshold. Duplicate. Phys. A 96, 397–400 (1967).

    ADS
    Case
    Article

    Google Scholar

  • 32.

    Ferraro, F. High Efficiency Gas Target Setup for Underground Experiments, Redesigning Branching Ratio of 189.5 KEV 22Birth (P.,C)23Resonance. Euro. Phys. J. 54, 44 (2018).

    ADS
    Article

    Google Scholar

  • 33.

    Rolfes, c. & Rodney, Wm. Coldrons in the Cosmos (University. Chicago Press, 1988).

  • 34.

    Serpico, PD et al. Nuclear Reaction Network for Primordial Nucleosynthesis: A Detailed Analysis of Rates, Uncertainties, and Light Nuclei. J. Cosmol. Astropart. Phys. 2004, 010 (2004).

    Article

    Google Scholar

  • 35.

    Nolet, KM & Burles, s. Response rate and uncertainty for primordial nucleosynthesis are calculated. Phys. Rev. D 61, 123505 (2000).

    ADS
    Article

    Google Scholar

  • 36.

    Tumino, a. Others. ‘S new visualization determination 2H (d,P.)3H,. 2H (d,n)3His response rate in astronomy. Astrophys. J.. 785, 96 (2014).

    ADS
    Article

    Google Scholar

  • 37.

    Pisanthi, O .; Parthenop: A public algorithm that evaluates the nucleosynthesis of primordial elements. Compute. Phys. Commune. 178, 956–971 (2008).

    ADS
    Case
    Article

    Google Scholar

  • Written By
    More from Jake Pearson

    Since March, Walmart has hired half a million people. This has not been done yet

    Instead of preparing to open the door Black Friday With the booming...
    Read More

    Leave a Reply

    Your email address will not be published. Required fields are marked *