Cybert, RH, Fields, BD, Olive, KA & Y, T. H. Big Bang Nucleosynthesis: Current Condition. Rev. Mode. Phys. 88, 015004 (2016).
Google Scholar
Tanabashi, m. Overview of particle physics. Phys. Rev. D 98, 030001 (2018).
Google Scholar
Cook, R., Pettini, M. & Steele, c. One percent determination of primordial deuterium abundance. Astrophys. J.. 855, 102 (2018).
Google Scholar
Pitro, C., Coke, A., Usan, J. with improved helium-4 predictions. & Vanjioni, e. Precision Big Bang Nucleosynthesis. Phys. Rep. 754, 1–66 (2018).
Google Scholar
Coke, a. New response rate for improved primordial d / h calculation and deuterium cosmic evolution. Phys. Rev. D 92, 123526 (2015).
Google Scholar
D. Valentino, e. Others. Nuclear rates are checked using Planck and BICEP2. Phys. Rev. D 90, 023543 (2014).
Google Scholar
Aganim, n. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
Google Scholar
Broggini, C., Bemmer, D., Cassoli, A.. & Tracy, d. Luna: Status and Prospects. Prog. Part. Duplicate. Phys. 98, 55–84 (2018).
Google Scholar
Kavanna, F .; & Defendant, p. Direct measure of the nuclear cross-section of the astronomical interest: results and perspectives. Int. J. Phys. A 33, 1843010–1843042 (2018).
Google Scholar
Moses, V. Set up commissioning for better measurement of D (P.,C)3He cross-section on the Big Bang nucleosynthesis energies. Euro. Phys. J. 56, 144 (2020).
Google Scholar
Formicola, a. Others. LUNA II 400kV Accelerator. Duplicate. Instrum. Methods Phys. Res. A 507, 609–616 (2003).
Google Scholar
Fields, bd, olive, ka, y, t. H. & Young, c. Big-Bang Nucleosynthesis of Planck. J. Cosmol. Astropart. Phys. 03, 010 (2020).
Google Scholar
Casella, c. The first measure of D (P.,C)3He went down the cross section to Solar Gamo Peak. Duplicate. Phys. A 706, 203–216 (2002).
Google Scholar
Ma, L. Dimensions of 1H (d,C)3He too 2H (P.,C)3He’s very low. Phys. Rev. C 55, 588–596 (1997).
Google Scholar
Griffiths, G., Larson, e. & Robertson, L. Capture of protons by protons. Can. J. Phys. 40, 402–411 (1962).
Google Scholar
Schmid, G .; The 2H (P.,C)3He too 1H (d,C)3He responds below 80 keV. Phys. Rev. C 56, 2565-2581 (1997).
Google Scholar
Tiama, i. Others. Experimental cross section and angular distribution 2H (P.,C)3He reacts on the Big-Bang nucleosynthesis energies. Euro. Phys. J. 55, 137 (2019).
Google Scholar
Markuchi, L., Mangano, G., Kievsky, A.. & Viviani, M. Indication of proton-deuteron radiative capture for the Big Bang nucleosynthesis. Phys. Rev. Let. 116, 102501 (2016).
Google Scholar
Adelberger, e. Solar Fusion Cross Sections. II. The pp Chain and CNO wheels. Rev. Mode. Phys. 83, 195–245 (2011).
Google Scholar
Schmid, G .; Consequences of Nucleonic Degree Independence in D ( ( Overwriter {p}} ), C)3He too P.( ( Overwriter {d}} ), C)3He responds Phys. Rev. Let. 76, 3088–3091 (1996).
Google Scholar
Iliadis, C., Anderson, K. S., Coke, A., Tims, F. X & Starfield, S. Bayesian Estimate of Thermonuclear Reaction Rate. Astrophys. J.. 831, 107 (2016).
Google Scholar
Consiglio, r. Others. PArthENoPE reloaded. Compute. Phys. Commune. 233, 237–242 (2018).
Google Scholar
D. Salas, p. & Pastor, s. Relic neutrino decoupling with flavor oscillations revisited. J. Cosmol. Astropart. Phys. 07, 051 (2016).
Google Scholar
Mangano, G .; Relic neutrino decoupling including flavor oscillations. Duplicate. Phys. B 729, 221–234 (2005).
Google Scholar
Awer, E., Olive, K.A., & Skillman, ed I λ10830 In determining helium abundance. J. Cosmol. Astropart. Phys. 07, 011 (2015).
Google Scholar
Paimbert, A., Paimbert, M. & Luridiana, V. Primordial helium abundance and number of neutrino families. Rev. Mex. Astron. Astrophys. 52, 419–424 (2016).
Valerdi, M., Pymbert, A., Pyembert, M. & Sixtus, a. Primordial helium abundance determination based on NGC 346, an H ii Area of small Magellanic cloud. Astrophys. J.. 876, 98 (2019).
Google Scholar
Isotov, YI, Tuan, TX & Guseva, NG The Primordial Deuterium Abundance of the Metal-Poor Wet Line System. Not Monday. R. Astron. So.. 445, 778–793 (2014).
Google Scholar
Griffiths, G., Lal, M. & Scarf, c. Response D (P.,C)3He is below 50 kV. Can. J. Phys. 41, 724–736 (1963).
Google Scholar
Warren, JB, Erdmann, KL, Robertson, LP, Axen, DA & McDonald, JR Photodiodegradation 3He was near the threshold. Phys. Rev. 132, 1691-1692 (1963).
Google Scholar
Geller, K., Moorhead, E.. & Cohen, L. The 2H (P.,C)3He responds on the breakup threshold. Duplicate. Phys. A 96, 397–400 (1967).
Google Scholar
Ferraro, F. High Efficiency Gas Target Setup for Underground Experiments, Redesigning Branching Ratio of 189.5 KEV 22Birth (P.,C)23Resonance. Euro. Phys. J. 54, 44 (2018).
Google Scholar
Rolfes, c. & Rodney, Wm. Coldrons in the Cosmos (University. Chicago Press, 1988).
Serpico, PD et al. Nuclear Reaction Network for Primordial Nucleosynthesis: A Detailed Analysis of Rates, Uncertainties, and Light Nuclei. J. Cosmol. Astropart. Phys. 2004, 010 (2004).
Google Scholar
Nolet, KM & Burles, s. Response rate and uncertainty for primordial nucleosynthesis are calculated. Phys. Rev. D 61, 123505 (2000).
Google Scholar
Tumino, a. Others. ‘S new visualization determination 2H (d,P.)3H,. 2H (d,n)3His response rate in astronomy. Astrophys. J.. 785, 96 (2014).
Google Scholar
Pisanthi, O .; Parthenop: A public algorithm that evaluates the nucleosynthesis of primordial elements. Compute. Phys. Commune. 178, 956–971 (2008).
Google Scholar
Prone to fits of apathy. Unable to type with boxing gloves on. Internet advocate. Avid travel enthusiast. Entrepreneur. Music expert.